拉格朗日乘子法--带约束的最优化问题求解

实际工程场景与带约束最小化问题建模

一般情况下,我们通常会遇到这样一种情况,对于一个状态x,我们会对其有很多形如fi(x)=0的观测,同时状态x,其本身满足g(x)=0这样的约束条件。我们想要求解的是在如上已知条件下状态x的最优估计。好了,既然已经有了问题,那么我们需要对其进行一个精确的数学建模。首先,无论如何最后求解得到的状态x是需要满足 g(x)=0 同时,对于所有的fi(x)=0的观测,我们需要明确一点,那就是其是一个超定的观测方程,根据这个方程我们也许可以直接解出x,但是这个x基本不可能满足g(x)=0。但是!所有的f观测其实都是存在噪声影响的,而约束g是不存在噪声影响的,因此我们可以据此构建带约束的优化问题如下 mini=1nfi2(x)s.t.g(x)=0 如上,不带噪声的g是必须满足的约束条件,带噪声的观测f们通过一个最小化的求解来获得最优解(之所以取平方是因为我们是想让每一个观测的相对误差都尽量小)。下面会介绍如何对此类问题进行求解。

问题描述:

min f(x,y)s.t. g(x,y)=0

表示在约束g的情况下求解f的最小值。(其中s.t.表示subject to,服从于的意思)

其实上面这个问题等价于 [lf(x,y)=λg(x,y)g(x,y)=0]

其中f(x,y)表示的是梯度。上面两个式子又等价于求f(x,y)λg(x,y)的极值(其中λ也是变量,因此其极值在函数对三个变量的求导都为0时)。

此处的意思是说,第二个式子表示的约束本身是g函数的一个等高线,f函数在取不同值时也会有很多等高线,只有f和g相切时上述带约束的最小化问题刚好得到解。

举个例子:

例子来源 min f(x,y)=x2+y2s.t. x2y=3 等价于: [lf(x,y)=[2x2y]=λ[20c2xyx2]=λg(x,y)g(x,y)=x2y3=0] 求解上述三元方程组可得 {x±1.61y1.1λ0.87


拉格朗日乘子法--带约束的最优化问题求解
http://line.com/2021/06/04/2021-06-04-lagrangian-multipliers/
作者
Line
发布于
2021年6月4日
许可协议
Powered By Valine
v1.5.1